THE IRRATIONAL CHESS
KNIGHT
Marko Petkovšek

ISSN 1318-4865

January 15, 1998

Ljubljana, January 15, 1998
The Irrational Chess Knight

Marko Petkovšek

Department of Mathematics
University of Ljubljana
Jadranska 19, 1111 Ljubljana, Slovenia
E-mail: Marko.Petkovsek@fmf.uni-lj.si
Fax: +386 61 217-281
Phone: +386 61 1766-680

Summary

While in the univariate case solutions of linear recurrences with constant coefficients have rational generating functions, in the multivariate case the situation is much more interesting: even though initial conditions have rational generating functions, the corresponding solutions can have generating functions which are algebraic but not rational, and perhaps even non-algebraic.

We start by an existence and uniqueness theorem for partial recurrences of the form

\[a_n = \Phi(a_{n+h_1}, a_{n+h_2}, \ldots, a_{n+h_k}), \quad \text{for } n \geq s, \]

where the values of \(a_n \) for \(n \geq s \) are given explicitly. In particular, we show that the lattice points in the first orthant can be enumerated in such a way that for all \(n \) the points \(n + h_i \) precede \(n \) in this enumeration, if and only if the convex hull of the set \(H = \{h_1, h_2, \ldots, h_k\} \) does not intersect the first orthant. This condition on \(H \) which ensures existence and uniqueness of solution is assumed to be satisfied in the sequel.

For linear partial recurrences with constant coefficients we show that when initial conditions grow at most exponentially, the same is true of the solution, which is consequently analytic in a neighbourhood of the origin. Next we consider the algebraic nature of the generating function of the solution of such recurrences, and define the apex of \(H \) as the componentwise maximum of the points in \(H \cup \{0\} \). When the initial conditions have rational generating functions and the apex of \(H \) is \(0 \), the generating function of the solution is rational and is given by an explicit formula. When the initial conditions have algebraic generating functions and the apex of \(H \) has at most one positive coordinate, the generating function of the solution is algebraic and can be found by solving an algebraic equation and a system of linear equations.
Finally, when the apex has more than one positive coordinate, and the initial conditions have rational generating functions, the generating function of the solution need not be rational, which we demonstrate on the problem of the chess knight with restricted moves. We also conjecture that in this case the generating function is not even algebraic.

Résumé

Pendant que dans le cas d’une seule variable les séries génératrices des solutions des équations aux récurrences linéaires aux coefficients constants sont rationnelles, dans le cas de plusieurs variables ces séries peuvent être algébriques non-rationnelles, ou pas même algébriques.

Nous commençons par donner un théorème d’existence et unicité pour récurrences partielles ayant la forme

\[a_n = \Phi(a_{n+h_1}, a_{n+h_2}, \ldots, a_{n+h_k}), \quad \text{pour } n \geq s, \]

où les valeurs \(a_n \) pour \(n \not\geq s \) sont connues. Nous montrons qu’il y existe une énumération des points entiers naturels, telle que pour tous \(n \) les points \(n + h_i \) précèdent \(n \) dans cette énumération, si et seulement si l’intersection de l’enveloppe convexe de \(H = \{h_1, h_2, \ldots, h_k\} \) avec le premier octant est vide. Nous supposons que cette condition pour \(H \) implique l’existence et l’unicité de la solution est satisfaite par toutes les récurrences que nous considérons.

Pour récurrences partielles linéaires aux coefficients constants nous montrons que la solution est analytique dans un voisinage de l’origine si les conditions initiales sont bornées par une fonction exponentielle de \(n \). Nous appelons l’apex de \(H \) le maximum des points de \(H \cup \{0\} \) calculé par coordonnées. Si les séries génératrices des conditions initiales sont rationnelles et l’apex de \(H \) est \(0 \), la série génératrice de la solution est rationnelle et peut être calculée par une formule explicite. Si les séries génératrices des conditions initiales sont algébriques et l’apex de \(H \) a une coordonnée positive au plus, la série génératrice de la solution est algébrique. Pour la trouver on doit résoudre une équation algébrique et un système des équations linéaires.

Enfin, si l’apex de \(H \) a plus d’une coordonnée positive et les séries génératrices des conditions initiales sont rationnelles, la série génératrice de la solution n’est pas nécessairement rationnelle. Nous présentons un exemple de ce type provenant du “problème de cavalier”. Nous conjecturons que dans ce cas-là, la série génératrice n’est pas même algébrique.

1 An existence and uniqueness theorem

Throughout the paper, we use \(\mathbb{N} \) to denote the set of nonnegative integers. We write \(\mathbf{u} = (u_1, u_2, \ldots, u_d) \) for \(d \)-tuples of numbers or indeterminates, and \(\mathbf{u} \geq \mathbf{v} \) when \(u_i \geq v_i \) for \(1 \leq i \leq d \).

Let \(A \) be a nonempty set. We consider \(d \)-dimensional partial recurrence equations of the form

\[a_n = \Phi(a_{n+h_1}, a_{n+h_2}, \ldots, a_{n+h_k}), \quad \text{for } n \geq s, \]
where \(a : \mathbb{N}^d \rightarrow A \) is the unknown \(d \)-dimensional sequence (\(d \)-sequence for short) of elements of \(A \), \(\Phi : A^k \rightarrow A \) is a given function, \(H = \{ h_1, h_2, \ldots, h_k \} \subseteq \mathbb{Z}^d \) is the set of \(d \)-shifts, and \(s \in \mathbb{N}^d \) is the starting point satisfying \(s + H \subseteq \mathbb{N}^d \). We assume that the initial conditions are of the form

\[
a_n = \varphi(n), \quad \text{for } n \geq 0, n \not\geq s,
\]

where \(\varphi : \{ n \in \mathbb{N}^d; n \not\geq s \} \rightarrow A \) is a given function.

We think of the \(h_i \) as having mostly negative coordinates, and of the point \(n \) as depending on the points \(n + h_1, n + h_2, \ldots, n + h_k \) as far as the value of \(a_n \) is concerned.

The objective of this section is to characterize the sets \(H \) for which there is a well-ordering of \(\mathbb{N}^d \) of order type \(\omega \) such that the points \(n + h_1, n + h_2, \ldots, n + h_k \) precede \(n \) in this ordering. Then there exists a unique solution \(a_n \) of (1), (2), and for any \(n \in \mathbb{N}^d \) it is possible to compute the value of \(a_n \) directly from (1), (2) in a finite number of steps.

Definition 1 For \(H \subseteq \mathbb{Z}^d \) and \(p, q \in \mathbb{N}^d \), let

\[
p \prec_H q \quad \text{iff} \quad p \not\in q + H \subseteq \mathbb{N}^d.
\]

The transitive closure \(\prec^+_H \) of \(\prec_H \) in \(\mathbb{N}^d \) is the dependency relation corresponding to \(H \). When \(p \prec_H q \) we say that \(q \) depends on \(p \).

For a set \(H \subseteq \mathbb{R}^d \) we denote by \(\text{conv} \, H \) its convex hull, and by \(\text{i-cone} \, H \) its integer cone

\[
\text{i-cone} \, H = \{ x \in \mathbb{R}^d; \ x = \sum_{i=0}^{k} \lambda_i h_i, \lambda_i \in \mathbb{N}, \ h_i \in H \}.
\]

The following theorem is proved in [4, Sec. 3.3, Cor. 2]:

Theorem 1 Let \(H \subseteq \mathbb{Z}^d \) be a finite set, and \(\prec_H \) the corresponding dependency relation. Then the following are equivalent:

1. \(\prec_H \) is asymmetric and has no infinite descending chain in \(\mathbb{N}^d \),
2. \(\{ x \in \mathbb{R}^d; \ x \geq 0 \} \cap \text{i-cone} \, H = \emptyset \),
3. \(\{ x \in \mathbb{R}^d; \ x \geq 0 \} \cap \text{conv} \, H = \emptyset \),
4. there exists an \(a \in \mathbb{R}^d, a > 0 \), such that \(a \cdot h < 0 \) for all \(h \in H \),
5. there exists an \(a \in \mathbb{N}^d, a > 0 \), such that \(a \cdot h < 0 \) for all \(h \in H \),
6. \(\prec_H \) can be extended to a well-ordering of \(\mathbb{N}^d \) of order type \(\omega \).

Now it is easy to state and prove the existence and uniqueness theorem for recurrences of the form (1), (2).

Theorem 2 Let \(H \subseteq \mathbb{Z}^d \setminus \{ 0 \} \) be a nonempty set such that \(\{ x \in \mathbb{R}^d; \ x \geq 0 \} \cap \text{conv} \, H = \emptyset \). Then there exists a unique \(d \)-sequence \(a : \mathbb{N}^d \rightarrow A \) which satisfies (1), (2).
Define a function such that \(u/2 \) which satisfies \(\leq \). Let \(p : \mathbb{N} \to \mathbb{N}^d \) be a bijection which satisfies \(i < j \iff p_i < H p_j \). Such a bijection exists because \(<_H \) has order type \(\omega \). Define a function \(f : \mathbb{N} \to A \) recursively by \(f(0) = \varphi(p_0) \) and
\[
f(i) = \begin{cases}
\Phi(f(p^{-1}(p_i + h_1)), f(p^{-1}(p_i + h_2)), \ldots, f(p^{-1}(p_i + h_k))), & \text{if } p_i \geq s, \\
\varphi(p_i), & \text{otherwise,}
\end{cases}
\]
for \(i > 0 \). As \(H \) is nonempty and \(0 \notin H \), we have \(p_0 \gg s \). Because \(p_i + h_j <_H p_i \) it follows that \(p^{-1}(p_i + h_j) < i \) so that \(f(i) \) is defined in terms of values of \(f \) at smaller arguments when \(p_i \geq s \). We conclude that \(f \) is well defined. Obviously \(a_n = f(p^{-1}(n)) \) satisfies (1) and (2).

Uniqueness of this solution follows easily by induction on the well-founded set \((\mathbb{N}^d, <^+_H)\).

This theorem generalizes the result of [7].

2 Partial recurrences with constant coefficients

In the rest of the paper, we limit our attention to recurrences of the form
\[
a_n = \sum_{h \in H} c_h a_{n+h}, \quad \text{for } n \geq s,
\]
where the set of values \(A \) is a field of characteristic zero, and \(c_h \) are given nonzero constants from \(A \).

Theorem 3 Take \(A = \mathbb{C} \), and let \(H \subseteq \mathbb{Z}^d \) be a finite set such that \(\{ x \in \mathbb{R}^d; x \geq 0 \} \cap \text{conv } H = \emptyset \). Let \(a \) be the unique solution of (2), (4). If there are constants \(m > 0 \) and \(u \in \mathbb{R}^d \) such that \(|\varphi(n)| \leq m^{u-n} \) for all \(n \gg s \), then the generating function of a
\[
F(x_1, x_2, \ldots, x_d) = \sum_{n \in \mathbb{N}^d} a_n x_1^{n_1} x_2^{n_2} \cdots x_d^{n_d}
\]
is analytic in a neighborhood of the origin.

Proof: Existence and uniqueness of \(a \) follow from Theorem 2. By Theorem 1(iv), there is \(v \in \mathbb{R}^d \) such that \(v > 0 \), and \(v \cdot h < 0 \) for all \(h \in H \). Since \(H \) is finite there exists an \(\varepsilon > 0 \) such that \(v \cdot h \leq -\varepsilon \) for all \(h \in H \). Let
\[
M = \max \left\{ 1, \left(\sum_{h \in H} |c_h| \right)^{1/\varepsilon}, \max_{1 \leq i \leq d} \frac{m_i}{v_i} \right\}.
\]
We now prove that \(|a_n| \leq M^{u-n} \) for all \(n \in \mathbb{N}^d \), using induction on the well-founded set \((\mathbb{N}^d, <^+_H)\).

If \(n \gg s \) then
\[
|a_n| = |\varphi(n)| \leq m^{u-n} = m_1^{u_1 n_1} m_2^{u_2 n_2} \cdots m_d^{u_d n_d}
\leq \left(\frac{m_1}{v_1} \right)^{u_1 n_1} \left(\frac{m_2}{v_2} \right)^{u_2 n_2} \cdots \left(\frac{m_d}{v_d} \right)^{u_d n_d} \leq M^{u-n}.
\]
Otherwise we assume inductively that \(|a_{n+h}| \leq M^v(n+h) \) for all \(h \in H \). Then

\[
\left| \sum_{h \in H} c_h a_{n+h} \right| \leq \sum_{h \in H} |c_h|M^v(n+h) \leq \sum_{h \in H} |c_h|M^v n^{-\varepsilon}
= M^v n^{-\varepsilon} \sum_{h \in H} |c_h| < M^v n,
\]

proving the claim. It follows that \(F(x_1, x_2, \ldots, x_d) \) converges when \(|x_i| < 1/M^v \). □

In the case of constant coefficients any term \(a_{n+h} \) with a non-zero coefficient \(c_h \) can be expressed explicitly from (4). As it turns out, there is always at least one “good” term.

Theorem 4 Let \(G \subseteq \mathbb{Z}^d \) be a nonempty finite set. Then there exists a point \(g_0 \in G \) such that the set \(H = \{ g - g_0; g \in G, g \neq g_0 \} \) satisfies the equivalent conditions of Theorem 1.

Proof: Let \(g_0 \) be the last point in \(G \) with respect to the lexicographic ordering of \(\mathbb{Z}^d \). Then it can be shown that \(\prec_H \) is asymmetric and has no infinite descending chains. □

3 Recurrences with algebraic generating functions

Definition 2 Let \(H \subseteq \mathbb{N}^d \) be a finite set. The apex of \(H \) is the point \(p \in \mathbb{N}^d \) defined by

\[
p_i = \max \{ h_i; \ h \in H \cup \{0\} \} \ (i = 1, 2, \ldots, d).
\]

In dimension \(d = 2 \), the apex of \(H \) is the upper right corner of the smallest rectangle (with its sides parallel to the axes) enclosing the set \(H \cup \{0\} \).

Theorem 5 Let \(H \subseteq \mathbb{Z}^d \) be a finite set such that \(\{ x \in \mathbb{N}^d; \ x \geq 0 \} \cap \text{conv} H = \emptyset \). Let \(a \) be the unique solution of (2), (4), and \(F(x) = \sum_{n \in \mathbb{N}^d} a_n x^n \) its generating function.

(i) If the apex of \(H \) is \(0 \) and all the initial sections

\[
f_{j_1, \ldots, j_m}^{i_1, \ldots, i_m}(x) = \sum_{n \in \mathbb{N}^d : n_{i_1} = 1, \ldots, n_{i_m} = j_m, n_{j_1} = 1, \ldots, n_{j_m} = j_m} a_n x^n
\]

(1 \(\leq m \leq d \), \(1 \leq i_1 < \cdots < i_m \leq d \), \(0 \leq j_r < i_r \) for \(1 \leq r \leq m \)) (5)

are rational power series, then the generating function \(F(x) \) is rational.

(ii) If the apex of \(H \) has one positive coordinate and all the initial sections (5) are algebraic power series, then the generating function \(F(x) \) is algebraic.

Proof: From (4) we obtain

\[
\sum_{n \geq s} a_n x^n = \sum_{h \in H} c_h \sum_{n \geq s} a_{n+h} x^n
\]
which can be rewritten as

\[
(1 - \sum_{h \in H} c_h x^{-h}) F(x) = \sum_{n \in \mathbb{N}} a_n x^n - \sum_{h \in H} c_h x^{-h} \sum_{n \in \mathbb{N}} a_n x^n. \tag{6}
\]

(i) If the apex of \(H \) is 0 then \(h \leq 0 \) for all \(h \in H \). Therefore the terms \(\sum_{n \notin s} a_n x^n \) and \(\sum_{n \notin s + h} a_n x^n \) are finite sums of initial sections and hence rational by assumption. Then

\[
F(x) = \frac{\sum_{n \notin s} a_n x^n - \sum_{h \in H} c_h x^{-h} \sum_{n \in \mathbb{N}} a_n x^n}{1 - \sum_{h \in H} c_h x^{-h}} \tag{7}
\]
is rational, too.

(ii) Let \(p \) be the apex of \(H \). Wlg. assume that \(p_1 > 0 \) while the remaining coordinates of \(p \) are zero. Then \(h_i \leq 0 \) for all \(i \geq 2 \) and \(h \in H \), so the right side of (6) is an affine combination, with coefficients which are algebraic power series in \(x_1, x_2, \ldots, x_d \), of the \(p_1 \) sections \(f_1^{(1)}, f_1^{(2)}, \ldots, f_1^{(p_1)} \). Note that these sections are not given by the initial conditions (2). From the definition of sections it follows that we can write

\[
f_t^{(1)}(x_1, x_2, \ldots, x_d) = x_1^{t} g_{t-s_1+1}(x_2, \ldots, x_d) \quad (s_1 \leq t \leq s_1 + p_1 - 1)
\]
where \(g_1, g_2, \ldots, g_{p_1} \) are unknown power series. Denote

\[
P(x_1, x_2, \ldots, x_d) = \left(1 - \sum_{h \in H} c_h x^{-h} \right) x^p.
\]

From the definition of apex it follows that \(p \geq 0 \) and \(p \geq h \) for all \(h \in H \), hence \(P(x_1, x_2, \ldots, x_d) \) is a polynomial. Now (6) can be rewritten as

\[
P(x_1, x_2, \ldots, x_d) F(x) = r_0(x_1, x_2, \ldots, x_d) + \sum_{i=1}^{p_1} r_i(x_1, x_2, \ldots, x_d) g_i(x_2, \ldots, x_d) \tag{8}
\]
where \(r_i \) are algebraic series. By setting \(x_2, \ldots, x_d \) to zero, we find that

\[
P(x_1, 0, \ldots, 0) = \left(x_1^{p_1} - \sum_{h \in H} c_h x_1^{p_1-h_1} \right).
\]

Because \(\{ x \in \mathbb{R}^d ; x \geq 0 \} \cap \text{conv} \ H = 0 \), we have \(h_1 < 0 \) for all \(h \in H \) which have \(h_2 = \cdots = h_d = 0 \). Therefore \(p_1 - h_1 > p_1 \) for all such \(h \), which means that \(x_1 = 0 \) is a root of \(P(x_1, 0, \ldots, 0) \) of multiplicity \(p_1 \). Hence there exist \(p_1 \) Puiseux series \(\xi_1(x_2, \ldots, x_d), \ldots, \xi_{p_1}(x_2, \ldots, x_d) \) which satisfy

\[
P(\xi_j(x_2, \ldots, x_d), x_2, \ldots, x_d) = 0 \quad (1 \leq j \leq p_1)
\]
and which pass through the origin (i.e., \(\xi_j(0, \ldots, 0) = 0 \) for \(1 \leq j \leq p_1 \)). Substituting \(\xi_1, \xi_2, \ldots, \xi_{p_1} \) for \(x_1 \) in (8) gives a linear system of \(p_1 \) linear equations with algebraic coefficients

\[
\sum_{i=1}^{p_1} r_i(\xi_j(x_2, \ldots, x_d), x_2, \ldots, x_d) g_i(x_2, \ldots, x_d) = r_0(\xi_j(x_2, \ldots, x_d), x_2, \ldots, x_d) \quad (1 \leq j \leq p_1)
\]
where \(F \) is a recurrence relation and initial conditions satisfied by the coefficients of \(F(x) \) and is therefore uniquely solvable. It follows that \(g_1, \ldots, g_{p_1} \) are algebraic, and hence so is

\[
F(x) = \frac{\tau_0(x_1, x_2, \ldots, x_d) + \sum_{i=1}^{p_1} \tau_i(x_1, x_2, \ldots, x_d)g_i(x_2, \ldots, x_d)}{P(x_1, x_2, \ldots, x_d)}
\]

as claimed. \(\Box \)

Example 1 For the partial recurrence

\[
a_{i,k} = a_{i,k-1} + a_{i-1,k-1} \quad (i, k \geq 1), \\
a_{0,k} = 1 \quad (k \geq 0), \\
a_{i,0} = 0 \quad (i \geq 1),
\]

we have \(s = (1, 1) \) and \(H = \{(0, -1), (-1, -1)\} \). Obviously \(\{x \in \mathbb{R}^d; x \geq 0\} \cap \text{conv } H = \emptyset \), hence there exists a unique solution of (9) – (11). The apex of \(H \) is \((0, 0)\), so we can use formula (7) to obtain the rational generating function

\[
F(x, y) = \sum_{i,k=0}^{\infty} a_{i,k} x^i y^k = \frac{(1-y)^{-1} - y(1-y)^{-1}}{1-y-xy} = \frac{1}{1-(x+1)y}
\]

which can be expanded as

\[
F(x, y) = \sum_{k=0}^{\infty} (x+1)^k y^k = \sum_{k=0}^{\infty} \sum_{i=0}^{k} \binom{k}{i} x^i y^k,
\]

yielding \(a_{i,k} = \binom{k}{i} \) as expected.

Example 2 The partial recurrence

\[
a_{i,0} = 1 \quad (i \geq 0), \\
a_{i,1} = 2i + 4 \quad (i \geq 0), \\
a_{0,k} = 4^k \quad (k \geq 0), \\
a_{i,k} = a_{i-1,k} + 2a_{i,k-1} + a_{i+1,k-2} \quad (i \geq 1, k \geq 2),
\]

leads to the following analogue of (6)

\[
(x - (x + y)^2)F(x, y) + \frac{y^2 + 2xy - x}{1-4y} + xy^2 f(y) = 0 \quad (16)
\]

where \(F(x, y) = \sum_{i,k=0}^{\infty} a_{i,k} x^i y^k \) and \(f(y) = \sum_{k=0}^{\infty} a_{1,k} y^k \). As \(\{x \in \mathbb{R}^d; x \geq 0\} \cap \text{conv } H = \emptyset \)

where \(H = \{(-1, 0), (0, -1), (1, -2)\} \), there exists a unique solution of (12) – (15). The apex of \(H \) is \((1, 0)\) with one positive coordinate, therefore, by Theorem 5, \(F(x, y) \) is algebraic. Only one solution of

\[
x - (x + y)^2 = 0,
\]
namely \(x = \frac{1 - \sqrt{1 - 4y}}{2} - y \), passes through the origin, so we obtain one additional equation
\[
\frac{y^2 + 2xy - x}{1 - 4y} + xy^2 f(y) = 0 \quad (x = \frac{1 - \sqrt{1 - 4y}}{2} - y)
\]
from which \(f(y) = \frac{(1 - 2y - \sqrt{1 - 4y})/(2y^2(1 - 4y))}{(1 - 2y + \sqrt{1 - 4y})/(2(1 + \sqrt{1 - 4y}))} \)
\(F(x, y) = \frac{2y(x + y) - x(1 + \sqrt{1 - 4y})}{2((x + y)^2 - x)(1 - 4y)} \),
an algebraic function which is not rational. To obtain an explicit expression for \(a_{i,k} \), write
\[
F(x, y) = \frac{(1 + z)^2}{((1 + z)^2 - 4x)(1 - 4y)} = \frac{1}{1 - 4y} \sum_{i=0}^{\infty} c^i(y)x^i \quad (z = \sqrt{1 - 4y})
\]
where \(c(y) = \frac{1 - \sqrt{1 - 4y}}{(1 - 4y)} \) is the generating function of the Catalan numbers. Expanding \(F(x, y) \) into a power series using the formula of [5, p. 153, Prob. 4.2.(a)], we find that for \(i \geq 1, k \geq 0 \),
\[
a_{i,k} = 4^k \sum_{j=0}^{k} 4^{-j} \frac{i}{i+j} \binom{2i+2j}{j}.
\]
Note that by replacing (12), (13) by \(a_{i,0} = 4^i, a_{i,1} = 4^{i+1} \) (for \(i \geq 0 \)), the solution changes to \(a_{i,k} = 4^{i+k} \) with rational generating function \(F(x, y) = \frac{1}{(1 - 4x)(1 - 4y)} \).

Additional examples of this kind can be found in [1, Exer. 2.2.1.-4, 11] and in [3].

4 The problem of the knight

When the apex of the set of shifts \(H \) has more than one positive coordinate, we suspect that the generating function of the solution of (2), (4) need not be algebraic even though all the initial sections (5) are. In this section we present an example of this type and prove that the generating function is not rational.

Example 3 On an otherwise empty chessboard which is infinite upwards and to the right there is a knight occupying the square \((i, k)\). If the knight is only allowed to move either 2 left and 1 up, or 2 down and 1 right, in how many different ways could it reach the border of the chessboard? The border consists of the first two rows and the first two columns, and once the knight reaches it, it is not allowed to move anymore.

Let \(a_{i,k} \) be the answer to this lattice-path problem. Then, obviously,
\[
a_{i,k} = a_{i-2,k+1} + a_{i+1,k-2} \quad (i, k \geq 2), \quad (17)
a_{i,0} = a_{i,1} = a_{0,k} = a_{1,k} = 1 \quad (i, k \geq 0). \quad (18)
\]
Here \(H = \{(-2,1), (1,-2)\} \) and \(\{x \in \mathbb{R}^d; \ x \geq 0\} \cap \text{conv} \ H = \emptyset \), so there exists a unique solution \(a \) of (17), (18), part of which is shown in Fig. 1. The apex of \(H \) is \((1,1)\), so Theorem 5 does not apply. In fact, this is the simplest example in which the apex of \(H \) has two
positive coordinates and H is symmetric w.r.t. the line $i = k$. By induction on $i + k$ one can show that $a_{i,k} = a_{k,i}$ and hence $F(x, y) = F(y, x)$. One can also show that $1 \leq a_{k} \leq 2^{i+k}$, therefore the power series

$$F(x, y) = \sum_{i,k=0}^{\infty} a_{i,k} x^i y^k$$

converges at least for $|x|, |y| < 1/2$. Let $f_k(x) = \sum_{i=0}^{\infty} a_{i,k} x^i$ denote the generating function for the kth row of a. Then from (17) it follows that $F(x, y)$ satisfies

$$(x^3 + y^3 - xy)F(x, y) = xy(a_{0,0} + a_{1,0}x + a_{0,1}y + a_{1,1}xy) + x(x^2 - y)(f_0(x) + y f_1(x))$$
$$+ \quad y(y^2 - x)(f_0(y) + x f_1(y)) + x^2 y^2 (x f_2(x) + y f_2(y)),$$

while (18) implies that $f_0(x) = f_1(x) = 1/(1 - x)$. Writing $f(x)$ for $x f_2(x)$, equation (19) thus turns into

$$(x^3 + y^3 - xy)F(x, y) = \frac{x^3 + y^3 - xy + x^2 y^2 (xy - x - y)}{(1 - x)(1 - y)} + x^2 y^2 (f(x) + f(y)). \quad (20)$$

By restricting (19) to the cubic curve

$$x^3 + y^3 - xy = 0 \quad (21)$$

shown in Fig. 2, an additional functional equation satisfied by f is obtained:

$$f(x) + f(y) = \frac{1}{(1 - x)(1 - y)} - 1 \quad \text{(when } x^3 + y^3 = xy). \quad (22)$$

This equation uniquely determines $f(x) = x \sum_{k=0}^{\infty} a_{2,k} x^k$.

Theorem 6 The formal power series f defined by (22) is not rational.
Figure 2: The leaf of Descartes \((x^3 + y^3 = xy)\).

Proof: Assume that \(f(x)\) is a rational function of \(x\). Let \(x(t) = t/(1+t^3)\), \(y(t) = t^2/(1+t^3)\) be a rational parameterization of (21). Then

\[
f(x(t)) + f(y(t)) = \frac{1}{(1 - x(t))(1 - y(t))} - 1
\]

(23) as an equality of rational functions of \(t\).

Let \(t_0 = 1/\sqrt{3}\), \(x_0 = x(t_0) = \sqrt{3}/3\), \(y_0 = y(t_0) = \sqrt{3}/3\). We claim that \(f(x)\) is singular at \(x = x_0\). Differentiating both sides of (23) w.r.t. \(t\) we find

\[
f'(x) = \frac{1}{(1 - x)^2(1 - y)} + \frac{\dot{y}(t)}{x(t)} \left(\frac{1}{(1 - x)(1 - y)^2} - f'(y) \right) \quad (x = x(t), y = y(t)).
\]

(24)

The derivative \(f'(y)\) is regular at \(y = y_0\), because the series \(f(y)\) converges for \(|y| < 1/2\) and \(y_0 < 1/2\). By using the rough upper bound \(a_{2,k} \leq 2^{k+2}\) for \(k \geq n\), we can estimate

\[
f'(y_0) = \sum_{k=0}^{\infty} (k + 1)a_{2,k}y_0^k \\
\leq \sum_{k=0}^{n-1} (k + 1)a_{2,k}y_0^k + \sum_{k=n}^{\infty} (k + 1)2^{k+2}y_0^k \\
= \sum_{k=0}^{n-1} (k + 1)a_{2,k}y_0^k + 8(n(1 - 2y_0) + 1) \frac{(2y_0)^n}{(1 - 2y_0)^2}
\]

10
which, using a computer algebra system and taking \(n = 99 \), gives \(f'(y_0) < 4.726 \). On the other hand, \(1/((1 - x_0)(1 - y_0)^2) > 6.312 \), proving that \(1/((1 - x_0)(1 - y_0)^2) - f'(y_0) \neq 0 \). Likewise \(\dot{y}(t_0) = \sqrt{3}/3 \neq 0 \) and \((1 - x_0)^2(1 - y_0) \neq 0 \), while \(\dot{x}(t_0) = 0 \). From (24) it follows that the rational function \(f'(x(t)) \) is the sum of two terms, one of which is regular and the other singular at \(t = t_0 \). Therefore \(f'(x) \), and hence \(f(x) \), is singular at \(x = x_0 \) as claimed.

On the other hand, from (23) it follows that \(f(x(t)) = 1/((1-x(t))(1-y(t)))-f(y(t))-1 \). All three terms on the right are regular at \(t = t_0 \), hence so is \(f(x(t)) \). Therefore \(f(x) \) should be regular at \(x = x_0 \). This contradiction shows that \(f(x) \) is not a rational power series. □

We conjecture that \(f(x) \) (and therefore \(F(x,y) \)) is not algebraic, and, moreover, not even D-finite [6, 2].

Note that by replacing the initial conditions (18) by
\[
a_{i,0} = 2^i, \quad a_{i,1} = 2^{i+1} \quad (i \geq 0), \\
a_{0,k} = 2^k, \quad a_{1,k} = 2^{k+1} \quad (k \geq 0),
\]
the solution of (17) changes to \(a_{i,k} = 2^{i+k} \) with rational generating function \(F(x,y) = \frac{1}{(1-2x)(1-2y)} \).

Acknowledgement. The author wishes to express his thanks to Philippe Flajolet, Bruno Salvy and Ivan Vidav for helpful discussions of the problem of the knight.

References

